中文字幕免费无码专区-精品人妻系列无码天堂-av毛片网-亚洲最大av资源站无码av网址-日批网站在线观看-女色综合-欧美 另类 国产 第一页-九色丨9lpony丨大学生-伊人焦久影院-欧美中文字幕无线码视频-欧美性暴力变态xxxx-日韩美女三级-亚洲成人系列

技術文章您現在的位置:首頁 > 技術文章 > ClickChemistryTools點擊化學銅穩定配體BTTAA選購指南

ClickChemistryTools點擊化學銅穩定配體BTTAA選購指南

更新時間:2025-03-19   點擊次數:567次

BTTAA是一種 Cu(I) 穩定配體。能夠長時間保持Cu(I)的催化能力,從而更好的進行ADC合成。BTTAA 的性能遠遠優于 THPTA 或 TBTA。

結構圖:


ClickChemistryTools點擊化學銅穩定配體BTTAA選購指南

ClickChemistryTools點擊化學銅穩定配體BTTAA選購指南

中文簡介:

BTTAA 是最新一代的 CuAAC 水溶性加速配體,與上一代配體(例如 THPTA 或 TBTA)相比,它提供了更大的速率增強。更重要的是,它最大限度地減少了對所探測細胞或生物體生理狀態的擾動,并通過進一步降低催化劑制劑中的銅負載,實現與抑制細胞細胞毒性的有效生物偶聯。


英文簡介:

BTTAA is a newest generation, water-soluble accelerating ligand for CuAAC that provides much greater rate enhancement compared to previous generation ligands (e.g. THPTA or TBTA). More importantly, it minimizes perturbations to the physiological state of the cells or organisms probed and allows for effective bioconjugation with suppressed cell cytotoxicity by further lowering copper loading in the catalyst formulation.


ClickChemistryTools點擊化學銅穩定配體BTTAA選購指南--文獻參考:

1. Graham, A. J., et al. (2022). Extracellular Electron Transfer Enables Cellular Control of Cu(I)-Catalyzed Alkyne-Azide Cycloaddition. ACS Cent Sci., 8 (2), 246-257.

2. Tharp, J. M., et al. (2021). Genetic Encoding of Three Distinct Noncanonical Amino Acids Using Reprogrammed Initiator and Nonsense Codons. ACS Chem Biol., 16 (4), 766-774.

3. Wood, T. M., et al. (2021). Optimization of Metabolic Oligosaccharide Engineering with Ac4GalNAlk and Ac4GlcNAlk by an Engineered Pyrophosphorylase. ACS Chem. Biol.,

4. Li, B., et al. (2020). TMEM132A, a Novel Wnt Signaling Pathway Regulator Through Wntless (WLS) Interaction. Front Cell Dev Biol., 8, 599890.

5. Simon P. Wisnovsky, et al. (2020). Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation. PNAS, 117 (41), 25293-25301.

6. Jun Kit Ow, M., et al. (2020). Super-Resolution Fluorescence Microscopy Reveals Nanoscale Catalytic Heterogeneity on Single Copper Nanowires. ACS Appl. Nano Mater.,, 3, 4, 3163–7.

7. Jiang, H., et al. (2014). Monitoring Dynamic Glycosylation in Vivo Using Supersensitive Click Chemistry. Bioconjugate Chem.,, 25, 698-706.

8. Uttamapinant, C., et al. (2012). Fast, Cell-Compatible Click Chemistry with Copper-Chelating Azides for Biomolecular Labeling. Angew. Chem. Int. Ed,., 51, 5852-56.

9. Besanceney-Webler, C., et al. (2011). Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew. Chem. Int. Ed,. 50 (35): 8051–6.





靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關村生命科學園北清創意園2-4樓2層

© 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:340021  站點地圖  技術支持:化工儀器網  管理登陸

主站蜘蛛池模板: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |